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摘 要:为实现大尺度仿生飞翼雕塑在强风荷载下的气动外形优化，本文发展了一种基于进化策略增强遗传算法的耦合优化方

法。本研究基于自主研发的流体数智化软件 TigerkinCFD，构建了集参数化建模、CFD高保真仿真与智能进化算法于一体的

自动化闭环设计平台。以飞翼绕中央脊柱的欧拉角及脊柱顶端转角为关键设计变量，在满足严格翼展与美学约束下，以结构

气动载荷最小化为目标，实施高效迭代寻优。数值实验表明：经 TigerkinCFD驱动的优化流程所获得的飞翼构型，在多个风

向下均实现气动载荷显著降低（8.54%~12.01%）；相较于传统方法，本文所提 ESAGA混合策略在保证全局最优性的同时，

展现出更优的收敛效率与鲁棒性。本研究为复杂建筑外形的气动优化问题提供了从核心软件到优化算法的完整创新解决方

案。
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0 引言
在建筑技术不断发展的今天，仿生建筑以其独

特的美学价值和功能特性在现代城市景观中日益

受到关注[1]。仿生建筑不仅追求视觉上的美感，还

在功能性和环境适应性方面提出了新的挑战。自然

界的生物形态为仿生建筑提供了丰富的灵感来源。

例如，信天翁的飞翼形态以其轻质高强的空心骨骼

结构（抗拉强度约 150MPa，翼展可达 3.7米）为仿

生设计提供了重要参考；而阿根廷出土的史前巨神

翼鸟化石显示其翼展估计可达 10 米，支撑骨骼最

大直径约为 60mm，这些自然样本为仿生建筑的气

动优化提供了重要的结构和力学启示。

进化策略（Evolutionary Strategies, ES）是一种

模 仿生 物进 化 原理 的算 法 ，由 德国 学 者 I.
Rechenberg和 HP. Schwefel于 1963年提出，最初用

于确定气流中物体的最优外形。该算法通过随机变

化和自然选择的机制优化物体外形参数，具有良好

的适应性和高效性，尤其适用于无梯度优化、黑盒

优化和连续变量函数优化等复杂场景[2]。进化策略

的核心在于通过变异和选择操作优化参数，与遗传

算法等其他进化算法相比，其在编码、变异和选择

机制上具有独特性，例如采用实数编码和特殊的变

异方法。

仿生学作为一门模仿自然或具有自然系统特

性的科学，在航空飞行器设计和建筑设计领域具有

广阔的应用前景。例如，高颖等人根据鹰的飞行特

性设计了仿鹰扑翼机构，通过建立气动力模型和运

动学模型，证明其具有良好的仿生运动特性和气动

特性[3]。高怡宁等人综述了仿生技术在飞行器气动

形态、减阻降噪、结构布局及轻质结构等方面的应

用进展，指出仿生技术在飞行器上的潜在应用方向
[4]。在仿生建筑设计中，气动优化是提升建筑性能

的关键，尤其是对于悬挑类仿生建筑，其重要性更

为突出。

计算流体动力学作为一种强大的数值模拟工

具，被广泛应用于分析建筑周围的流体流动特性。

许伟结合 CFD 数值模拟和风洞试验，研究了大跨

度体育馆的风压系数及其分布特征，并探讨了网格

密度和湍流模型对计算精度的影响[5]。林斌则通过

CFD模拟获取了体育馆的平均风压系数，并与风洞

试验结果对比验证，指出缩尺比引发的雷诺数变化

对钝体平均风压影响微乎其微[6]。张四化等人采用

风洞试验和 CFD 数值模拟，针对某大跨悬挑屋盖

的风荷载情况进行了深入探究，成功获取屋盖表面

平均风压系数与脉动风压系数的分布特征，并分析

了屋盖周边的流场特性[7]。

参数化设计通过将建筑形态的关键特征转化

为可调节的参数，实现了设计的高效迭代与优化。

孙斌等利用 CFD 结合遗传算法优化室内热舒适性

参数，证明了该方法在提升室内环境品质方面的有

效性[8]。张建国等基于 Grasshopper 和 SAP2000 平

台，实现了自由曲面网架的全参数化建模及优化，

显著降低了结构的整体应变能[9]。许可等基于环境

性能优化的角度，采用遗传算法对建筑布局进行参

数化设计，改善了校园公共空间的微气候环境，提

高了使用效率[10]。谷一弘等针对日照限定下的建筑
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形体设计问题，提出了网格累积法的建筑形体生成

与优化理念，并通过案例分析比较了不同日照限制

条件下遗传算法和网格累积法在建筑形体优化中

的效果[11]。冯奕天等采用参数化的思想利用智能式

结构设计开展了多项目设计，提升设计效率明显
[12]。

本文以某飞翼雕塑为例，提出了一种基于进化

策略增强遗传算法的参数化设计方法，旨在优化仿

生雕塑的形态，降低其在风荷载作用下的受力，提

升结构稳定性和抗风性能。通过在 Grasshopper平
台中开发流体数智化软件 TigerkinCFD，实现了从

参数化建模、网格划分、数值求解到结果可视化的

全流程自动化。研究以翼展长度和美学形态为约束

边界，飞翼绕中央脊柱的欧拉角、脊柱顶部转角为

参量，飞翼结构气动载荷最小化为目标函数，利用

进化策略增强遗传算法进行了多代迭代优化，最终

满足约束条件的最优欧拉角与顶部转角。研究结果

表明，该方法能够有效降低雕塑所受的流体作用

力，为仿生建筑设计提供了新的优化思路和实践方

法。

1 仿生结构进化策略的理论基础
1.1 参数化设计

参数化设计（Parametric Design）是一种先进的

数字化设计方法，它借助计算机技术将设计过程中

的各种要素转化为参数，并通过定义参数之间的关

系和约束条件，利用算法生成复杂的设计方案，如

图 1所示，通过参数化的方式修改肋环单层网壳的

半径、矢高、环形划分分数与径向划分分数。这种

方法的核心在于将设计问题转化为逻辑问题，通过

改变参数值或调整算法，快速生成多种设计方案，

从而极大地提高了设计效率和灵活性。

图 1 参数化修改单层网壳几何形状

Fig. 1 Parametric modification of a single-layer dome

参数化设计在建筑领域的应用日益广泛，特别

是在复杂建筑形态的设计中[13-15]。通过参数化设

计，建筑师能够以更高效的方式探索多种设计可能

性，实现从概念设计到详细设计的无缝衔接。例如，

在仿生建筑的设计中，参数化设计可以轻松应对复

杂的几何形态和多变的功能需求，为设计师提供更

大的创作自由度[16-17]。

TigerkinCFD是本研究团队基于Grasshopper平
台采用 C#语言自主研发的流体数智化软件如图 2
所示。本软件利用参数化的方式搭建数值风洞、运

行分析与结果后处理，配合优化算法，可进行自动

寻优。

图 2 TigerkinCFD流体数智化软件

Fig. 2 TigerkinCFD fluid digital intelligence software

1.2 CFD 模拟与风荷载分析

计 算 流 体 动 力 学 （ Computational Fluid
Dynamics，CFD）是一种利用计算机模拟流体流动

的数值方法。它基于流体力学的基本方程，如纳维

-斯托克斯方程，通过数值离散化和求解，能够详细

计算流体的速度、压力、温度等参数的分布情况。

在建筑领域，CFD 模拟被广泛应用于风环境分

析、热舒适度评估、通风性能优化等方面。通过 CFD
模拟，设计师可以在建筑设计阶段对建筑周围的流

场进行详细分析，预测建筑在不同风向和风速下的

风压分布、通风效果等，从而为建筑设计提供科学

依据。在复杂仿生建筑结构设计中，CFD 模拟可以

帮助设计师评估结构物的风荷载[18-20]，优化建筑的

外形和布局，以提高建筑的抗风性能。本文采用

ANSYS Fluent求解雷诺平均 Navier-Stokes（RANS）
方程，其中质量守恒和动量守恒方程分别为式（1）
~（2）：
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式中：Ui为时均速度，p为时均压强，ρ为流体密度，

μ为流体动力粘度。

1.3 遗传算法原理与应用

遗传算法（Genetic Algorithm，GA）是一种模

拟生物进化过程的全局优化算法。它受到自然选择

和遗传机制的启发，通过选择、交叉和变异等操作

不断进化种群，以寻找最优解，其流程图如图 3所
示。



图 3 传统遗传算法流程图

Fig. 3 Genetic algorithm flowchart

传统遗传算法的基本步骤包括初始化种群、适

应度评估、选择、交叉、变异和终止条件判断等。

在每一代进化中，遗传算法根据个体的适应度值进

行选择，适应度高的个体有更大的概率被选中进入

下一代。通过交叉和变异操作，遗传算法能够产生

新的个体，增加种群的多样性，避免陷入局部最优

解。遗传算法具有全局搜索能力强、不易陷入局部

最优等优点，适用于解决复杂的多变量优化问题。

遗传算法在建筑领域的应用主要包括建筑形

态优化、能耗分析、结构优化等方面。通过将建筑

的设计参数作为遗传算法的变量，以建筑性能指标

作为适应度函数，遗传算法可以在复杂的参数空间

中搜索到最优解，为建筑设计提供科学合理的优化

方案。例如，在建筑能耗优化中，遗传算法可以优

化建筑的朝向、窗墙比、围护结构等参数，以实现

能耗最低的目标。

1.4 ES 增强 GA 的混合优化策略

尽管遗传算法（GA）在解决复杂优化问题时

展现出强大的全局搜索能力，但其传统的突变算子

（通常是固定概率的随机扰动）在处理连续参数优

化问题时，存在局部开发能力不足、收敛速度慢的

缺点。为解决此问题，并充分利用仿生结构形态参

数为连续实数的特性，本研究将进化策略（ES）的

核心思想与遗传算法相结合，提出了一种进化策略

增强遗传算法（ES-Augmented GA,ESAGA）。

该算法的核心创新在于，将 ES 的自适应突变

机制嵌入到 GA的框架中，取代其传统的固定突变

算子。具体结合逻辑如下：通过选择和交叉操作，

负责在全局范围内传递和重组优良的基因模式，进

行宏观上的形态创新与探索，避免算法陷入局部最

优。通过自适应突变，负责对由交叉产生的后代个

体进行精细化的局部搜索。其核心是同时演化解向

量和策略参数，使得搜索过程能够根据环境（适应

度地形）自适应地调整扰动步长。

每个个体不仅包含问题的解（形态参数向量

x，还携带一个策略参数σ（即突变步长）。在每

一代的突变步骤中：首先，按照 ES 的规则突变策

略参数本身： e N ）（ 1,0'   。这实现了步长的自

适应更新：当搜索进程顺利时，倾向于增大步长以

加速；当在最优解附近震荡时，则减小步长以精细

搜索。然后，利用更新后的智能步长σ′去扰动解向

量： )1,0('' Nxx   ，这使得突变操作是有导向

的、有记忆的，而非完全随机。

通过上述设计，该混合算法兼具了 GA的全局

鲁棒性和 ES 的局部快速收敛能力。在本文的飞翼

雕塑优化中，交叉算子负责探索不同的飞翼姿态组

合，而自适应突变则负责对这一姿态进行微调，以

找到该姿态下气动载荷最小的精确角度。二者协同

工作，共同驱动种群向更优解方向高效进化。本文

第 2.4节将给出该算法的详细流程框架。

2 CFD驱动的进化策略增强遗传算法寻优方

法
利用 TigerkinCFD 作为 CFD+进化策略增强遗

传算法寻优的实施平台，技术路线如图 4所示。

图 4 CFD+进化策略增强遗传算法寻优技术路线图



Fig. 4 Technical roadmap for CFD & ES-augmented genetic

algorithm optimization

2.1 参数化 CFD 协同仿真流程

Grasshopper 为 Rhino 平台上的参数化建模工

具，可实现几何体的参数化建模，其本身无法进行

有限元网格划分、流体动力学计算。TigerkinCFD
建立了 Grasshopper与网格划分软件 ICEM CFD 以

及数值计算软件 ANSYS Fluent 的关联，具体实施

方法如下：

（1）利用 C#语言开发网格划分专用组件，如图 5
所示，组件的作用是生成 ICEM CFD脚本文件.rpl，
然后后台调用 ICEM CFD 读取脚本文件进行流域

的网格划分，并导出 ANSYS Fluent 计算所需要的

网格文件。

图 5 参数化网格划分组件

Fig. 5 Parametric meshing component

（2）利用 C#语言开发 ANSYS Fluent 专用组件，

组件的作用是根据输入条件生成 ANSYS Fluent 脚
本文件.jou，然后在后台调用 ANSYS Fluent读取脚

本文件进行网格导入、参数设置、探针设置、运行

分析等操作，计算完成后导出用户需要的分析结

果。

图 6 ANSYS Fluent相关组件开发

Fig. 6 Development of ANSYS fluent related components

2.2 仿生结构参数化建模

本文要优化的结构物是某飞翼雕塑，其几何尺

寸如图 7所示，飞翼雕塑总高度约 10m，翼展约为

9.5m。

图 7 飞翼雕塑几何尺寸示意图

Fig. 7 Schematic diagram of the flying wing sculpture

geometric dimensions

要结合进化策略增强遗传算法对飞翼雕塑形

态优化，需要在 Grasshopper 平台中对飞翼进行参

数化建模，建模过程如图 8所示，以建筑的提资表

皮为基础平面，通过定义飞翼绕脊柱旋转欧拉角参

数θ与飞翼脊柱顶部转角α，可以快速生成不同形态

的飞翼模型，如图 9~图 10所示。

图 8 飞翼欧拉角参数化建模组件连接图

Fig. 8 Connection diagram of the flying wing Euler angle parametric modeling component



（1）θ=-15°,α=45° （2）θ=+15°,α=45°
图 9 飞翼欧拉角θ参数化变化（粉色为基准平面）

Fig. 9 Parametric variation of the flying wing Euler angle θ

(pink indicates the reference plane)

图 10 脊柱顶部旋转角α参数化变化示意

Fig. 10 Schematic diagram of the parametric variation of

the spine top rotation angle α

2.3数值风洞建模与边界条件设定

利用 TigerkinCFD 的快速生成数值风洞组件

（图 11），组件接收几何体、风向、风速、底面

粗糙度、风洞边界偏移尺寸等参数，可以实现参数

化数值风洞的生成，如图 12所示。

图 11 快速生成数值风洞组件链接图

Fig. 11 Component connection diagram for rapid

generation of numerical wind tunnel

数值风洞各边界条件如下：入口采用速度入

口，根据输入的参考高度、底面粗糙度等风荷载参

数，组件内部通过逻辑运算生成满足规范要求的风

剖面，数值风洞出口采用自由出流边界(outflow)，
风洞两侧采用对称边界(symmetry)，数值风洞底部

以 及 飞 翼 雕 塑 采 用 非 滑 移 壁 面 边 界 (no-slip
wall)[21]，数值风洞顶部采用可滑移壁面边界(slip
wall)。

图 12 数值风洞边界条件示意图

Fig. 12 Schematic diagram of numerical wind tunnel

boundary conditions

利用 TigerkinCFD 的网格划分组件对生成数值

风洞进行参数化网格划分，并生成用于 ANSYS
Fluent计算的网格文件，如图 13所示。

图 13 网格划分组件连接图

Fig. 13 Component connection diagram for meshing

利用 TigerkinCFD 的内力探针组件进行飞翼雕

塑的内力提取设置，如图 14所示。利用运行分析

组件根据数值风洞参数生成.jou脚本文件，并调用

ANSYS Fluent读取该脚本，对数值风洞进行求解。

图 14 内力探针设置

Fig. 14 Internal force probe setup

本文采用基于进化策略增强遗传算法，以飞翼

雕塑美学形态为约束边界，飞翼绕中央脊柱的欧拉

角θ、脊柱顶部转角α为参量，飞翼结构气动载荷最

小化为目标函数 f(θ,α)，通过进化策略增强遗传算

法迭代计算，找出最优欧拉角与顶部转角。

其中，“美学形态”通过与建设方沟通确定，

并转化为参数边界，本文建立三层次量化约束（表

1）：（1）曲率连续▽K≤0.05 m-3；（2）镜像对

称 H≤0.8%；（3）满足建筑提资。



表 1 美学约束边界

Tab. 1 Aesthetic constraint boundaries

指标 约束条件 物理意义

高斯曲率变化率 ▽K≤0.05 m-3 避免“皱褶”视觉突兀

镜像 Hausdorff距离 H≤0.08 m 左右视觉对称

翼展投影长度 L=9.5m 建筑提资（建设方要求）

2.4 ESAGA算法流程与实现细节

2.4.1算法流程

本节将详细阐述在 1.4节中提出的进化策略遗

传算法的具体实现流程。该算法的详细执行流程如

图 15所示。

图 15 进化策略增强遗传算法流程图

Fig. 15 Flowchart of Evolutionary Strategy Enhanced

Genetic Algorithm

2.4.2 算法本文中的具体实现

在本研究的飞翼雕塑优化中，该混合算法的具

体体现为：解向量 x为飞翼欧拉角θ与脊柱顶部转角

α。策略参数σ为一个与解向量维度相同的向量

(σθ,σα)，控制两个参数各自的突变步长。适应度函

数 )(xf 通过 TigerkinCFD 自动化流程计算得到的

飞翼结构气动载荷。约束处理为在 ES 突变后，立

即检查新生成的形态参数是否满足翼展长度、曲率

连续性等美学约束。若违反，则丢弃该个体，从而

保证搜索始终在可行域内进行。

通过上述设计，GA 负责在宏观上“创造”有潜

力的新形态（通过交叉），而 ES 则负责对该形态

进行“精雕细琢”（通过自适应突变），二者协同工

作，共同驱动种群向风荷载更小的方向高效进化。

3 工程案例与优化验证

3.1 项目概况与优化目标

本项目位于海南省三亚市，基本风压为

0.85kN/m2[22]，设防烈度为 6度，地震分组为第一组，

场地类别为 II类。其效果图如图 16所示。本文选

取某飞翼雕塑作为研究对象，其总高约 10 m、翼展

约 9.5 m，具有复杂异形曲面，且处于高风压区域，

具备典型优化价值。在满足建设方提出的翼展长度

（9.5 m）和美学形态要求的前提下，通过调整飞翼

绕中央脊柱的欧拉角θ与脊柱顶部转角α，使飞翼结

构在多风向风荷载作用下的气动荷载最小化，从而

降低材料用量与结构成本。

图 16 飞翼雕塑效果图

Fig. 16 Rendering of the flying wing sculpture

3.2 模型验证与网格独立性检验

CFD计算选用 RNG k-ε湍流模型，湍动能 k及
耗散率ε的基本方程为：
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2kCt  ；空气

密度=1.225kg/m3；C1ε=1.42；C2ε=1.68；Cμ=0.0845。
为校核所选数值参数的合理性，以 CAARC高

层建筑基准模型[23]为算例实施 CFD 模拟，并将结

果与风洞试验数据进行比对。湍流方程选用 RNG
k-模型[[3]，壁面处理方式采用 Scalable壁函数。计

算域以非结构网格离散，其中模型近壁加密区的网

格扩张比设为 1.02，外围稀疏区扩张比为 1.2；通

过调节这两区域的节点数目，可生成细、中、粗三

套不同密度的网格体系。

结构壁面首层网格高度根据 y+准则确定，该无

量纲参数按式(5)–(9)估算。针对高雷诺数工况，y+

需控制在 30~300之间[24]。初步设定 y+=30，试验来



流风速约 12 m/s，取结构特征尺度 0.15 m，代入上

述关系式可得相应边界层首层厚度约为 0.5 mm。


vlRe  （5）

5105760 /
f Re.C  （6）

250 vC. fw   （7）


 w*u  （8）

u
yy *


 （9）

式中，v为流动速度；l为特征长度；为流体密度；

为流体运动粘度；为流体动力粘度；u*为近壁面

摩擦速度；τw为壁面剪切应力；Cf为壁面摩擦系数。

采用三种不同密度的网格，分别提取测点 3与
6的平均压力系数 Cp，并与同济大学 TJ-2 风洞的试

验结果[25]进行比对；同时记录了三套网格的计算耗

时，汇总于表 2。结果表明，三种网格的数值误差

均在工程可接受范围内。综合权衡精度与计算资源

后，决定以中等密度网格作为后续工况的标准策

略。进一步验证该网格方案的可靠性：图 18给出

流域内平均风速及湍流强度沿高度的分布，与规范

理论解的差异不超过 5%；图 19则展示了结构 2/3H
高度处各测压点的 Cp计算值与试验值，相对误差同

样控制在 5%以内。上述对比证明，所选湍流模型、

壁面函数及网格尺度等关键参数设置合理，能够满

足精度需求，后续研究均沿用该套数值框架。

表 2 网格无关性验证

Tab. 2 Grid independence verification

网格质量 网格数量/个 测点 3-Cp 测点 6- Cp 用时/h

精细 约 230万 0.853 -0.713 8

中等 约 160万 0.850 -0.701 3.2

粗糙 约 58万 0.847 -0.689 0.5

文献[23] - 0.86 -0.72 -

图 17 流域速度及湍流度沿高度的分布

Fig. 17 Distribution of flow velocity and turbulence

intensity along the height

图 18 结构 2/3H高度处各测点平均风压系数 Cp

Fig. 18 Mean wind pressure coefficient Cp at measuring

points at 2/3H height of the structure

3.3 优化变量与约束条件设定

将飞翼绕脊柱旋转欧拉角θ（相对于基准面）

与脊柱顶部转角α作为优化变量。其中，欧拉角决

定翼面与来流的宏观夹角，可在不突破美学轮廓的

前提下直接改变迎风面积与压力中心位置；脊柱顶

部转角则用于对尾缘局部流场进行微调。两者协同

调整，使雕塑在复杂风场中的整体风荷载显著下

降。与建设方沟通后，可接受的欧拉角θ范围为

[-10°,20°]，可接受的脊柱顶部转角 α范围为

[30°,60°]，步长变化均为 1°。除了优化变量外，还

有众多约束条件，如翼展长度，曲面形态等美学约

束。通过算法约束实现，整个优化模型的数学定义

式如下：

 
   





 jiigts

f

,...,2,10..

,min 
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式中，θ、α为优化变量；f(θ,α)为目标函数，gi(x)
为优化约束条件。

3.4 优化过程与参数敏感性分析

利用 TigerkinCFD 搭建参数化数值风洞模型。

对初始模型进行 CFD 模拟，获取飞翼上的合力。

将合力作为遗传算法的目标函数，开始优化迭代。

在每一代迭代中，生成新的飞翼形态，进行 CFD



模拟并计算合力。根据进化策略增强遗传算法的选

择、交叉和变异操作，不断更新种群，直至达到设

定的代数。提取最优解，即合力最小对应的飞翼旋

转欧拉角与脊柱顶部转角。

本研究中进化策略增强遗传算法的参数设置

如下：种群规模 10、迭代 10代、交叉概率 0.8、初

始突变步长σinit为搜索范围的 20%、学习率τ为 0.5。
初始突变步长σinit控制初代扰动幅度。遵循“与搜

索范围成正比”的经验法则[26-27]，通常取变量范围

的 10%~20%[28]。本研究优化变量为飞翼欧拉角θ

（范围-10°~20°）与脊柱转角α（30°~60°），

搜索宽度均为 30°，故初始步长设为 6°，兼顾探

索广度与收敛效率。学习率τ控制突变步长的自适应

速率，常按维度 n设定为：

nτ 2/1 (11)

式中，τ为学习率，n为参量维度。本研究维度 n=2，
得τ=0.5，可在进化过程中实现步长的指数级平滑调

整，有效平衡探索与开发。鉴于变量维度低、边界

明确，小种群与少迭代已足够探索解空间。交叉概

率取经典值 0.8[29-30]。
以 0°风向角（原始合力 41.34 kN）为例，验证

参数合理性。对种群规模（5/10/20）与迭代次数

（5/10/20）组合进行 10次重复实验（见表 3）。结

果表明，当种群≥10 且迭代≥10时，输出趋于稳定

（标准差<0.15 kN）。本文参数组合平均最优合力

为 36.43 kN，与网格搜索全局最优（36.30 kN）相

比，误差仅 0.36%，最大偏差<0.83%。在单次 CFD
仿真耗时数小时的条件下，该设置实现了高精度、

高稳定性的近似全局优化，具备良好的工程实用

性。

表 3 遗传算法参数敏感性分析（平均气动荷载±标准差，

单位: kN）

Tab. 3 Sensitivity analysis of genetic algorithm parameters

(Mean aerodynamic load ± Std, unit: kN)

种群规模 迭代 5 代 迭代 10 代 迭代 20 代

5 37.82 ± 0.62 37.21 ± 0.31 37.05 ± 0.22

10 37.28 ± 0.37 36.43 ± 0.14 36.40 ± 0.12

20 37.12 ± 0.43 36.41 ± 0.13 36.38 ± 0.10

3.5 多风向优化结果与机理分析

考虑到结构对称性，计算时，在 0~180°范围

内每 30°取一个风向角，共计 7个风向角工况。

表 4 给出了各风向角β下寻优后的飞翼绕脊柱

欧拉角θ、脊柱转角α与气动荷载减小率 r，可知在

各风向角下的最优欧拉角θopt范围为[12°,17°]，最优

脊柱转角αopt范围为[41°,47°]，综合考虑合力减小率

r与建筑形态的美观性，选取θ=15°、α=45°为最终

优化参量。

表 4不同风向角β下最优 θopt、αopt 及 r(%)

Tab. 4 Optimal θopt, αopt, and r(%) under different wind

direction angles β

β 0° 30° 60° 90° 120° 150° 180°

θopt 15° 16° 12° 14° 13° 17° 15°

αopt 45° 42° 47° 45° 45° 41° 42°

r -12.01 -10.12 -9.96 -11.41 -8.84 -10.74 -9.64

注：减小率=(原始方案-优化方案)/原始方案

表 5给出了θ=15°、α=45°时各风向角作用下

飞翼所受气动荷载的减小率 r，可见在欧拉角为

15°、脊柱顶部转角 45°时能有效减小雕塑所受气

动荷载，根据寻优结果最终确定飞翼绕脊柱的欧拉

角为 15°与脊柱顶部转角为 45°。

表 5 θ=15°、α=45°时各风向角β下的 r(%)

Tab. 5 r(%) under different wind direction angles β at

θ=15° and α=45°

β 0° 30° 60° 90° 120° 150° 180°

r -12.01 -9.83 -8.86 -10.42 -8.54 -10.18 -9.37

注：减小率=(原始方案-优化方案)/原始方案

上述结果表明，优化后的飞翼形态在不同风向

角下均能有效降低气动载荷，但其减小率存在差

异。这种差异主要源于不同来流条件下，飞翼形态

与流场相互作用机制的改变。具体分析如下：

（1）原始方案-流线图 （2）优化方案-流线图

（3）原始方案-涡量图 （4）优化方案-涡量图



（5）原始方案-迎风面风压 （6）优化方案-迎风面风压

（7）原始方案-背风面风压 （8）优化方案-背风面风压

图 19 原始方案与优化方对比图（0°风向角）

Fig. 19 Comparison Between Original and Optimized

Schemes (0° Wind Direction Angle)

(1) 流场结构与涡脱落机制的影响：在 0°和
180°等正向来流工况下，飞翼与来流方向夹角最大，

流动分离现象最为显著。优化后的形态（θ=15°, α
=45°）通过调整翼面与脊柱的相对角度，有效地引

导了尾部涡流的形成与演化。如图 19 (1)~(4)所示，

在 0°风向角下，优化形态的背部形成了更为集中

且持久的拟稳态旋涡结构。该旋涡在背风面诱导出

一个显著的低压区，与迎风面的高压区相互作用，

其净效应部分抵消了正向风压，从而显著降低净气

动载荷，如图 18 (5)~(8)所示。这正是 0°风向角下

荷载减小率达 12.01%、90°风向角下仍保持 10.42%
减小率的主要原因。

(2) 迎风面积与压力中心位置的敏感性：当风

向角偏离主轴（如 120°工况），飞翼的有效迎风面

积减小，绝对荷载值随之降低。然而，在这些斜向

来流条件下，流场三维效应增强，流动分离点趋于

分散，单一的形态参数难以在所有复杂流态下实现

最优流动控制。同时，斜风会引起表面压力中心的

横向偏移，如图 20所示，提升对结构抗扭性能的

要求。本优化以总合力最小化为目标，所得形态可

能在降低阻力的同时，也在一定程度上抑制了压力

中心的移动幅度。但相较于正向来流，其通过涡流

调控实现荷载抵消的效率有所下降，因此优化效果

（减小率约 8.54%~8.86%）略低于正向风况。

（a）120°风向角 （b）0°风向角

图 20 120°与 0°风向角结构风压对比云图

Fig. 20 Contour of Structural Wind Pressure Comparison

at 120° and 0° Wind Direction Angles

优化效果在不同风向角下的差异性，揭示了仿

生飞翼结构气动荷载对来流方向的敏感性，及其背

后流场控制机理的内在联系。在流动分离主导的正

向风况下，形态优化的收益最大；而在三维流态显

著的斜向风况下，荷载的进一步降低则面临更多挑

战。这为未来开展多风向协同优化或多目标（气动

+结构）耦合设计提供了重要的理论依据和改进方

向。

根据优化有的形态对飞翼雕塑进行结构设计，

钢号为 Q355BNH，杆件采用圆管截面，典型位置

杆件尺寸如表 6所示。

表 6 飞翼结构杆件尺寸

Tab. 6 Member dimensions of the flying wing structure

位置 脊柱 飞翼 飞翼支撑 底部支撑

截面 P426×24 P108×16~P57×10 P108×12 P89×14

注：截面标识为 直径×壁厚

结构三维模型及控制应力比如图 21~图 22所
示，其中飞翼位置最大应力比为 0.82，脊柱最大应

力比为 0.58，

图 21 结构模型

Fig. 21 Structural model

图 22 结构应力比

Fig. 22 Structural stress ratio

3.6 与其他优化方法的对比验证

为验证本优化方法的有效性，本研究将其与枚

举法和传统遗传算法(GA)进行了对比，如表 7 所



示。在以 0°风向角为例的优化中，本文提出

ESAGA 方法找到了与枚举法全局基准完全一致的

最优解（气动载荷降低 12.01%），而 GA找到的解

略逊。在计算效率上，ESAGA 与 GA 仅需 100 次

CFD 模拟，效率是枚举法（需 961次模拟）的 9.6
倍。该对比结果表明，本研究所采用的 ESAGA算

法在解决此类问题时兼具全局寻优的可靠性与远

超传统方法的高效性。

表 7 不同优化方法性能对比（0°风向角）

Tab. 7 Performance comparison of different optimization

methods (0° wind direction)

优化方法 最优参数 (θ, α) 气动载荷减小率 CFD模拟次数

枚举法 (15°,45°) -12.01% 961

ESAGA (15°, 45°) -12.01% 100

GA (13°, 47°) -11.65% 100

图 23为 ESAGA算法与传统 GA算法的优化过

程收敛曲线对比图，可以看出，两种算法均能有效

降低气动载荷，但 ESAGA在收敛速度和求解精度

上均展现出显著优势。在迭代初期（第 2-4 代），

得益于 ES 自适应突变带来的高效局部开发能力，

ESAGA的气动载荷下降速率明显快于传统 GA。在
迭代后期（第 6-10代），当搜索接近全局最优解时，

ESAGA 的自适应步长能够精细调整搜索行为，最

终稳定收敛至 36.43 kN，其解质量显著优于传统

GA（36.80 kN）。此外，ESAGA 曲线平滑下降的

趋势，也体现了算法良好的稳定性。该收敛过程直

观地验证了将进化策略的自适应突变机制嵌入遗

传算法框架，在解决此类连续参数优化问题上的有

效性与优越性。

图 23 优化过程收敛曲线对比（0°风向角）

Fig. 23 Comparison of Optimization Process Convergence

Curves (0° Wind Direction Angle)

4 结论
本文围绕仿生飞翼雕塑在风荷载作用下的形

态优化问题，提出了一种基于进化策略增强遗传算

法（ESAGA）的 CFD 驱动优化方法，并通过

TigerkinCFD平台实现了从参数化建模、网格划分、

数值模拟到优化迭代的全流程自动化。主要研究结

论如下：

（1）提出了一种高效的混合优化策略。通过

将进化策略（ES）的自适应突变机制嵌入遗传算法

（GA）框架，构建了 ESAGA算法。该算法在保持

GA全局搜索能力的基础上，显著提升了局部开发

效率与收敛精度，适用于连续型形态参数的优化问

题。

（2）实现了 CFD与优化算法的深度融合。借

助 TigerkinCFD软件，打通了 Grasshopper参数化建

模、ICEM CFD 网格划分与 ANSYS Fluent 求解之

间的数据链路，形成了闭环的数字化设计流程，显

著提高了复杂仿生结构在多物理场耦合分析中的

优化效率。

（3）获得了显著的工程优化效果。以某飞翼

雕塑为案例，在满足翼展长度与美学形态约束的前

提下，优化后的飞翼形态在不同风向角下气动荷载

平均降低约 8%~12%，最大降幅达 12.01%。结构应

力分析表明，优化后的形态在满足强度要求的同

时，有效提升了抗风性能。

（4）验证了方法的优越性与适用性。通过与枚举

法和传统 GA 方法的对比，ESAGA 在保证全局最

优解一致的前提下，将 CFD 模拟次数从 961 次降

低至 100次，计算效率提升近 9倍，收敛曲线也显

示出更快的下降速度与更好的稳定性。

综上所述，本文所提出的 CFD+ESAGA优化方

法，不仅在理论上拓展了进化算法在建筑形态优化

中的应用边界，也为实际工程中复杂仿生结构的气

动性能提升提供了可靠的技术路径，具有良好的工

程推广价值与进一步研究的潜力。
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Algorithm
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Objective This research systematically investigated the aerodynamic shape optimization of a large-scale bionic flying-wing sculpture

subjected to strong wind loads. The study was motivated by the need to enhance structural performance while maintaining

architectural aesthetics in wind-prone coastal environments. The primary objective was to develop an integrated computational

framework that could effectively minimize structural wind-induced forces while satisfying strict dimensional constraints and

aesthetic requirements. The sculpture, characterized by its complex biomimetic geometry with a height of 10 meters and wingspan of

9.5 meters, presented significant engineering challenges due to its susceptibility to wind loads and the competing demands of

structural efficiency and visual appeal. The research aimed to establish a robust methodology that could balance these competing

requirements through advanced computational techniques and optimization algorithms.

Methods The research methodology encompassed the development of a comprehensive computational framework integrating

parametric modeling, computational fluid dynamics, and evolutionary optimization. A fully automated CFD-driven optimization

pipeline was established using Rhinoceros 3D and Grasshopper for parametric modeling. Two key geometric parameters were

identified as design variables: the Euler angle of the wing about the central spine (θ, ranging from -10° to 20°) and the rotation angle

at the spine tip (α, ranging from 30° to 60°). These parameters were carefully selected for their significant influence on the

aerodynamic characteristics while maintaining the essential architectural form. The core computational innovation was the

development of the Evolutionary Strategy-Augmented Genetic Algorithm (ESAGA), which synergistically combined the global

search capability of genetic algorithms with the adaptive mutation mechanism of evolution strategies. In this hybrid approach, each

solution candidate was represented by both a parameter vector (θ, α) and an associated strategy parameter vector that controlled

mutation step sizes. The mutation process followed a sophisticated two-step procedure where strategy parameters were first updated

through log-normal perturbation before being used to mutate the solution parameters. This mechanism enabled dynamic adjustment

of search characteristics throughout the optimization process. The computational infrastructure was supported by TigerkinCFD, a

custom-developed platform that automated the entire workflow from parametric modeling to CFD analysis. The platform seamlessly

integrated Grasshopper for geometry generation, ICEM CFD for mesh generation, and ANSYS Fluent for flow simulation. The CFD

simulations employed the Reynolds-Averaged Navier-Stokes equations with RNG k-ε turbulence model closure. A detailed validation

study was conducted using the CAARC standard tall building model to verify the accuracy of the numerical approach. The

computational domain was discretized using unstructured grids with careful attention to near-wall resolution, ensuring y+ values

remained within the recommended range of 30-300. Boundary conditions included a velocity inlet with atmospheric boundary layer

profile, pressure outlet, symmetry conditions on lateral boundaries, and appropriate wall treatments. The optimization objective was

formulated as the minimization of the resultant aerodynamic force on the structure, while constraints included fixed wingspan length,

limits on Gaussian curvature variation (▽K ≤ 0.05 m⁻³) to prevent visual discontinuities, and mirror symmetry requirements

(Hausdorff distance H ≤ 0.08 m) to maintain aesthetic balance.

Results and Discussions The optimization study was conducted for seven wind directions from 0° to 180° in 30° increments.

ESAGA demonstrated remarkable efficiency in identifying optimal configurations across all wind conditions. The algorithm

parameters were carefully tuned through sensitivity analysis, with population size set to 10, maximum generations to 10, crossover

probability to 0.8, and initial mutation step size set to 6° (approximately 20% of the parameter range). The optimal solutions showed

consistent patterns across different wind directions, with θ_opt values clustering between 12° and 17° and α_opt values ranging from

41° to 47°. After comprehensive evaluation of performance across all wind directions and consideration of architectural consistency,

a final configuration of θ=15° and α=45° was selected. This configuration achieved substantial aerodynamic improvement, with load

reduction rates ranging from 8.54% to 12.01% across different wind directions. The most significant reduction of 12.01% was

observed at 0° wind direction, where the absolute force decreased from 41.34 kN in the original design to 36.36 kN in the optimized

configuration. Comparative analysis revealed ESAGA's superior performance relative to conventional methods. In the 0° wind



direction case, ESAGA successfully identified the global optimum configuration (15°, 45°) identical to that found by exhaustive

enumeration, but achieved this with only 100 CFD evaluations compared to 961 required by enumeration - representing a 9.6-fold

improvement in computational efficiency. Traditional genetic algorithm with identical computational budget converged to a inferior

solution (13°, 47°) yielding only 11.65% load reduction. The convergence characteristics clearly demonstrated ESAGA's advantages,

showing faster initial descent and more stable convergence compared to traditional GA. Flow field analysis provided physical

insights into the optimization mechanism. Streamline visualization and vorticity contours revealed that the optimized shape promoted

the formation of a more organized and persistent vortex structure in the wake region. This improved vortex structure induced a

favorable pressure distribution, with enhanced low-pressure region on the leeward side that effectively counteracted the windward

pressure. Surface pressure distributions confirmed this mechanism, showing more balanced pressure fields around the optimized

geometry. The optimization effectiveness showed directional dependence, being most pronounced in head-on wind conditions (0° and

90°) where flow separation dominates the aerodynamic behavior. In oblique wind directions (120° and 150°), while the absolute

loads were smaller due to reduced projected area, the complex three-dimensional flow characteristics made aerodynamic control

more challenging, resulting in relatively lower but still substantial improvement. Structural verification of the optimized

configuration using Q355BNH steel with tubular sections demonstrated satisfactory performance, with maximum stress ratios of 0.82

in the wing elements and 0.58 in the spine, well within acceptable limits for structural safety.

Conclusions This research has successfully established and validated an integrated computational framework for aerodynamic shape

optimization of complex architectural structures. The study makes several significant contributions to the field of performance-based

architectural design. First, the development of the ESAGA hybrid optimization algorithm represents a substantial advancement in

computational optimization techniques, effectively combining the global search capability of genetic algorithms with the adaptive

local search characteristics of evolution strategies. The algorithm demonstrated superior performance in terms of convergence speed

and solution quality compared to conventional optimization approaches. Second, the implementation of a fully automated

computational workflow through the TigerkinCFD platform provides a robust framework for integrating parametric design with

high-fidelity CFD simulation, significantly enhancing the efficiency of the design optimization process. Third, the successful

application to a real-world bionic sculpture demonstrates the practical viability of the proposed methodology, achieving substantial

aerodynamic improvement (8.54%-12.01% load reduction) while maintaining all architectural and structural constraints. The

comprehensive validation through comparison with multiple optimization methods and detailed flow analysis provides strong

evidence for the effectiveness and reliability of the proposed approach. The research outcomes offer valuable insights for architects

and engineers working on complex-shaped structures in wind-prone environments, providing both methodological guidance and

practical solutions for performance-driven design. The framework established in this study has good potential for extension to other

types of architectural structures and multi-disciplinary optimization problems involving competing performance objectives.

Key Words: Evolutionary Strategy; Parametric Design; Computational Fluid Dynamics; Genetic Algorithm; Bionic Sculpture; Wind

Load Optimization


