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Fig. 1 Parametric modification of a single-layer dome
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Fig. 3 Genetic algorithm flowchart
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Fig. 4 Technical roadmap for CFD & ES-augmented genetic
algorithm optimization
2.1 &k CFD R E RIS
Grasshopper A Rhino V& F 1) Z 84k @8 T
H, ArsEB LR S BUCEEE, HoARB TEikitAT
AR TTME R R AES) S5 . TigerkinCFD
57 | Grasshopper 5 W% %14 ¥ ICEM CFD LA
Fe S TS84 ANSYS Fluent (195 HE, B AASE it
JHREMWT
(1) MH C#iEF P RMME R L A, Wi s
Fiox, A5 R4E 2 4 ICEM CFD JHIA SCAH pl,
SR )5 5 & 18 F ICEM CFD 52 BRI A SC A 3247 308 35
IR R4y, 5 H ANSYS Fluent 5 i 75 2 (1)
WS ST A

B 5 SHMRERIT AL

Fig. 5 Parametric meshing component
(2) FIFH CHiE & T K ANSYS Fluent % F 4114,
ALAFIIAE P A AR B S A\ 25 712 B ANSY'S Fluent
AR jou, PRJELE)E M ANSYS Fluent 15U
A ATRRE RN . SHOBE . REFIE. 81T
TR, TR T AT R E R A gl
e

B 6 ANSYS Fluent XA MTF K
Fig. 6 Development of ANSYS fluent related components
2.2 FEERSHLER
ASCEARM I AR 2 IR, LT R
S 7 Frs, CRMEEE L 10m, BERELAN
9.5m.,

A7 RREEEIRS A EE
Fig. 7 Schematic diagram of the flying wing sculpture
geometric dimensions
B B A SRS T 5l 0 A% LA T R
Sk, T EALE Grasshopper V& H X% KR ITS
B, o fRaEl 8 fs, DAImiRER
BOAFERT T, 8 E SCRRGEF IR R A S
o5 CRAH TR Mo, ATLPROEA A RS
R IR, i 9~ 10 s

B 8 KRMIASHUBBAEEE

Fig. 8 Connection diagram of the flying wing Euler angle parametric modeling component
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Shape Optimization of a Bionic Flying-Wing Sculpture Using an Evolutionary Strategy-Enhanced Genetic
Algorithm
Wen Zhibin', Fan Chao'*,Zhao Nan!, Xue Xubiao!, Luo Yi',Hu Zhenjie', Yang Shaolin?
(1 JZFZ Architectural Design Co., Ltd., Chengdu 610000, China;
2 School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou 450001, China)

Objective This research systematically investigated the aerodynamic shape optimization of a large-scale bionic flying-wing sculpture
subjected to strong wind loads. The study was motivated by the need to enhance structural performance while maintaining
architectural aesthetics in wind-prone coastal environments. The primary objective was to develop an integrated computational
framework that could effectively minimize structural wind-induced forces while satisfying strict dimensional constraints and
aesthetic requirements. The sculpture, characterized by its complex biomimetic geometry with a height of 10 meters and wingspan of
9.5 meters, presented significant engineering challenges due to its susceptibility to wind loads and the competing demands of
structural efficiency and visual appeal. The research aimed to establish a robust methodology that could balance these competing
requirements through advanced computational techniques and optimization algorithms.

Methods The research methodology encompassed the development of a comprehensive computational framework integrating
parametric modeling, computational fluid dynamics, and evolutionary optimization. A fully automated CFD-driven optimization
pipeline was established using Rhinoceros 3D and Grasshopper for parametric modeling. Two key geometric parameters were
identified as design variables: the Euler angle of the wing about the central spine (0, ranging from -10° to 20°) and the rotation angle
at the spine tip (a, ranging from 30° to 60°). These parameters were carefully selected for their significant influence on the
aerodynamic characteristics while maintaining the essential architectural form. The core computational innovation was the
development of the Evolutionary Strategy-Augmented Genetic Algorithm (ESAGA), which synergistically combined the global
search capability of genetic algorithms with the adaptive mutation mechanism of evolution strategies. In this hybrid approach, each
solution candidate was represented by both a parameter vector (0, a) and an associated strategy parameter vector that controlled
mutation step sizes. The mutation process followed a sophisticated two-step procedure where strategy parameters were first updated
through log-normal perturbation before being used to mutate the solution parameters. This mechanism enabled dynamic adjustment
of search characteristics throughout the optimization process. The computational infrastructure was supported by TigerkinCFD, a
custom-developed platform that automated the entire workflow from parametric modeling to CFD analysis. The platform seamlessly
integrated Grasshopper for geometry generation, [ICEM CFD for mesh generation, and ANSYS Fluent for flow simulation. The CFD
simulations employed the Reynolds-Averaged Navier-Stokes equations with RNG k-¢ turbulence model closure. A detailed validation
study was conducted using the CAARC standard tall building model to verify the accuracy of the numerical approach. The
computational domain was discretized using unstructured grids with careful attention to near-wall resolution, ensuring y+ values
remained within the recommended range of 30-300. Boundary conditions included a velocity inlet with atmospheric boundary layer
profile, pressure outlet, symmetry conditions on lateral boundaries, and appropriate wall treatments. The optimization objective was
formulated as the minimization of the resultant acrodynamic force on the structure, while constraints included fixed wingspan length,
limits on Gaussian curvature variation (VK < 0.05 m™) to prevent visual discontinuities, and mirror symmetry requirements
(Hausdorff distance H < 0.08 m) to maintain aesthetic balance.

Results and Discussions The optimization study was conducted for seven wind directions from 0° to 180° in 30° increments.
ESAGA demonstrated remarkable efficiency in identifying optimal configurations across all wind conditions. The algorithm
parameters were carefully tuned through sensitivity analysis, with population size set to 10, maximum generations to 10, crossover
probability to 0.8, and initial mutation step size set to 6° (approximately 20% of the parameter range). The optimal solutions showed
consistent patterns across different wind directions, with 6_opt values clustering between 12° and 17° and o_opt values ranging from
41° to 47°. After comprehensive evaluation of performance across all wind directions and consideration of architectural consistency,
a final configuration of 6=15° and a=45° was selected. This configuration achieved substantial aerodynamic improvement, with load
reduction rates ranging from 8.54% to 12.01% across different wind directions. The most significant reduction of 12.01% was
observed at 0° wind direction, where the absolute force decreased from 41.34 kN in the original design to 36.36 kN in the optimized

configuration. Comparative analysis revealed ESAGA's superior performance relative to conventional methods. In the 0° wind



direction case, ESAGA successfully identified the global optimum configuration (15°, 45°) identical to that found by exhaustive
enumeration, but achieved this with only 100 CFD evaluations compared to 961 required by enumeration - representing a 9.6-fold
improvement in computational efficiency. Traditional genetic algorithm with identical computational budget converged to a inferior
solution (13°, 47°) yielding only 11.65% load reduction. The convergence characteristics clearly demonstrated ESAGA's advantages,
showing faster initial descent and more stable convergence compared to traditional GA. Flow field analysis provided physical
insights into the optimization mechanism. Streamline visualization and vorticity contours revealed that the optimized shape promoted
the formation of a more organized and persistent vortex structure in the wake region. This improved vortex structure induced a
favorable pressure distribution, with enhanced low-pressure region on the leeward side that effectively counteracted the windward
pressure. Surface pressure distributions confirmed this mechanism, showing more balanced pressure fields around the optimized
geometry. The optimization effectiveness showed directional dependence, being most pronounced in head-on wind conditions (0° and
90°) where flow separation dominates the aerodynamic behavior. In oblique wind directions (120° and 150°), while the absolute
loads were smaller due to reduced projected area, the complex three-dimensional flow characteristics made aerodynamic control
more challenging, resulting in relatively lower but still substantial improvement. Structural verification of the optimized
configuration using Q355BNH steel with tubular sections demonstrated satisfactory performance, with maximum stress ratios of 0.82
in the wing elements and 0.58 in the spine, well within acceptable limits for structural safety.

Conclusions This research has successfully established and validated an integrated computational framework for aerodynamic shape
optimization of complex architectural structures. The study makes several significant contributions to the field of performance-based
architectural design. First, the development of the ESAGA hybrid optimization algorithm represents a substantial advancement in
computational optimization techniques, effectively combining the global search capability of genetic algorithms with the adaptive
local search characteristics of evolution strategies. The algorithm demonstrated superior performance in terms of convergence speed
and solution quality compared to conventional optimization approaches. Second, the implementation of a fully automated
computational workflow through the TigerkinCFD platform provides a robust framework for integrating parametric design with
high-fidelity CFD simulation, significantly enhancing the efficiency of the design optimization process. Third, the successful
application to a real-world bionic sculpture demonstrates the practical viability of the proposed methodology, achieving substantial
aerodynamic improvement (8.54%-12.01% load reduction) while maintaining all architectural and structural constraints. The
comprehensive validation through comparison with multiple optimization methods and detailed flow analysis provides strong
evidence for the effectiveness and reliability of the proposed approach. The research outcomes offer valuable insights for architects
and engineers working on complex-shaped structures in wind-prone environments, providing both methodological guidance and
practical solutions for performance-driven design. The framework established in this study has good potential for extension to other

types of architectural structures and multi-disciplinary optimization problems involving competing performance objectives.
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